
TD-06-003 
01/25/06 

 1

Proton Driver Front End 
Focusing Solenoid Quench Protection Studies. 

Part I: Method Description and the First Iteration 
I. Terechkine, P. Bauer 

 
This note describes quench protection studies made in preparation for testing focusing 

solenoids of the Front End of the Proton Driver (PD). 
Quench events are inevitable during the testing, and configuration of the testing setup 

must ensure safety of the solenoid, power supply, and other test equipment during this 
event. Protection of the solenoid is usually reached by switching off the power supply 
and by quick removal of the energy stored in the magnetic field. Whether this energy 
evacuation is possible or not can be found only after knowing details of quench 
propagation in the solenoid. To make this analysis, one must answer the next questions: 

1. How fast does quench propagate from the start point to other parts of the coil? 
2. What temperature of the normal parts of the coil can be after the quench? 
3. What can be resistance of the coil? 
4. How the current in the coil behaves after the power supply is made off? 
5. What voltage in the coil can we expect? 
6. What voltage can be detected in the early stage of the quench using voltage taps? 
7. Can we use this voltage to control the test stand protection system? 

Answering these questions is important before engaging in the test planning activities.  

This study is devoted to a specific issue of the quench dynamics in the Test Solenoid, 
being built to work on fabrication issues. The results of the study are not universal, but 
used techniques can be applied to analyze other solenoids. As a tool for this study 
MathCad spreadsheets were used. More efforts are required to come out with a software 
that would automate some of the steps made manually in this study and provide more 
options for a designer. These kinds of efforts, although quite attractive, are not included 
in our nearest action plan.  

 
I. Coil layout and the main assumptions 

The layout of the Test Solenoid is show in Fig. 1 below. 

 
Fig. 1: Test solenoid layout 
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It is possible to see that the solenoid is relatively short and clearly does not have 
uniform magnetic field within the bore of the beam pipe. Nevertheless for the purpose of 
getting results fast, we will accept that the magnetic filed does not change in the 
longitudinal direction. In the radial direction we will accept that in the winding the field 
changes linearly with radius, which is quite close to the reality.  

One of the most important parameters of the coil is a ratio between the maximal 
magnetic field in the winding and the current. In our case, the value of this coefficient 
(for the test solenoid shown in Fig. 1) is 0.0188 T/A. The number of turns in the coil is 
2200 and the number of layers is 20. Other relevant coil design information can be found 
in Fig. 1. Properties of the superconductor will be discussed later.  

Although the round wire was used to wind the sample coil, in this exercise we used 
equivalent rectangular wire with the same number of layers: N = 20. We assume that the 
insulation thickness between the layers of the coil is twice as large as the insulation 
thickness between the turns in the same layer. Taking into the account this assumption 
and knowing the coil geometry, it is quite straightforward to come out with the equivalent 
wire dimensions and insulation thickness. Equivalent compaction factor of this winding 
was adjusted to have wire cross-section equal to that of the round NbTi  SSC-type strand. 
This equivalent compaction factor k = 0.664, which is quite close to the value 0.67 
achieved during the sample coil winding. The total cross-section area of  bare strand  is 
0.513*10-6  m2. The height of one layer (including insulation) is 0.85*10-3 m and the 
width of one turn is 0.91*10-3  m (including insulation). The insulation thickness between 
the turns in the layer is 97.4*10-6 m and between the layers the insulation is 195*10-6  m 
thick.  

Now when we know the structure of the coil, we are ready to start the analysis of 
quench propagation. But first the relevant properties of all materials used to build the coil 
must be found and expressed in a convenient manner as functions of temperature and 
magnetic filed, so that we could use them in the MathCad environment.  

II. Material properties 
Mostly these properties were borrowed from work of P. Bauer on the analysis of 

quench propagation in the high field dipole, although some data have different source. 
Below the parameterization of each particular property will be presented accompanied by 
the corresponding graph. We are talking about the next set of properties: 

1. Specific heat 
2. Thermal conductivity 
3. Specific resistance  
4. Superconducting wire critical surface and critical parameters of the strand 

 
Because the coil insulation is made of fiberglass impregnated with epoxy, properties of 
this insulation are close to those of G-10 material.  

II-1   Specific heat 

Specific heat parameterization for Cu with RRR = 50 and corresponding graph are 
shown below in Fig. 2. Similar data from NbTi and for epoxy-impregnated glass fibers 
(G-10) are shown in Fig. 3 and Fig. 4. 
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Fig. 2: Specific Heat of Copper (RRR = 50) 
 

    
Fig. 3: Specific Heat of NbTi 

  
Fig. 4: Specific Heat of G-10 

II-2.  Thermal conductivity 

Thermal conductivity dependence on temperature were found in available 
reference materials and tabulated with subsequent interpolation. Corresponding tables 
and graphs are provided below. Units for λ are W/m-K 

            Table 1: Thermal Conductivity of Copper (RRR = 50) 
T (K) 4 6 8 10 20 30 50 70 90 110 300 
λ(Cu) 500 700 950 1150 2000 1900 1050 650 500 400 390 
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Fig. 5: Thermal conductivity of copper (RRR = 50) 
 

         Table 2: Thermal conductivity of G-10 
T (K) 2 4 6 10 20 50 80 100 200 300 
λ(G10) 0.03 0.057 0.082 0.12 0.17 0.24 0.3 0.32 0.45 0.65 
 

 
Fig. 6: Thermal conductivity of G-10 

II-3. Specific Resistance 

Universal expression for the specific resistance of copper that takes into the account 
purity (RRR) of copper and magnetic field is shown accompanied with a corresponding 
graph in Fig. 7 below. 
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Fig. 7: Specific resistance of copper as a function of temperature.  
           B = 0.1 T, 1 T, and 7.5 T; RRR = 50 

II-4. Critical Surface of  NbTi 

Parameterization of the critical surface for NbTi was made many times by many 
authors, including A. Devret (Fig. 8). Although quite reliable, this way of presenting the 
critical surface has proved to be quite time consuming when used in the MathCad 
environment when the spreadsheet must performed multiple calculations. Simpler 
(although probably less precise) expression was used (Fig. 9) that gave quite satisfactory 
representation of the critical surface within the required range of parameters. For both the 
plots, critical current density is plotted versus magnetic field with the strand temperature 
as a parameter.  

 

 
Fig. 8. Critical Surface of NbTi. Old representation 
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Fig. 9. Critical Surface of NbTi.  New representation.  

To switch from the current density to the strand current, it is necessary to know 
content of NbTi and copper in the strand. This content is defined by a copper-to-non-
copper ratio, which is γ = 1.3 for the SSC strand that will be used in the coil. The cross-
section of superconductor in the strand can be found as Asc = Amet/(1+γ) and copper 
cross-section is ACu = Amet

* γ /(1+ γ). Taking this into the account, strand current (for the 
strand size described earlier) can be calculated knowing the current density in the 
superconductor:  

I = Jsc *Amet/(1+γ) 
So, critical surface of the strand can be plotted in terms of strand critical current as a 
series of curves with the strand temperature as a parameter (see Fig. 10). 

 
Fig. 10: Critical surface of the strand used in the coil of the solenoid. 
 

Knowing this critical surface it is possible to calculate temperature of a particular turn 
of the solenoid winding (that carries the current I and is in the magnetic field B) at the 
moment when it starts loosing its property of superconductivity. An example of how this 
critical temperature depends on the coil current is shown in Fig. 11 for a turn in the first 
layer, which is exposed to the maximal field. It is possible to see that the maximal current 
that the strand in the coil can carry at 4.5 K is 340 A. If to lower current, the critical 
temperature increases and at about 190 A it becomes quite close to the ultimate critical 
temperature of NbTi of 9.2 K corresponding to I = 0 and B = 0.  
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Fig. 11: Critical temperature for a turn in the first layer of the coil.  

To simplify further modeling using MathCad environment, calculation of these 
curves of critical current for different layers were simplified by using the expression in 
Fig. 12, that shows a set of the critical temperature curves for turns in different layers of 
the coil. This expression was obtained by first finding Tcs(n, I) using representation in 
Fig. 10 and then by applying parameterization in a convenient form. Definitely, other 
ways can be found of doing this transformation.  

 

 
Fig. 12: Critical temperature as a function of coil current and the number of the layer. 

After the preparation work described above, we can start analysis of quench 
propagation in the coil. Quench can start in any turn of the coil due to many reasons. 
Some of them are listed below: 

- Magnetic flux line movement due to loss of pinning; 
- Mechanical movement of a part of a turn; 
- High frequency noise in the current source; 
- Energy deposition due to radiation. 
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Underlying physical reason of transition to normal state is increase of temperature in 
a turn above the critical level. Because the temperature margin is lower for the first layer, 
it has the highest probability to quench. In the next chapter we’ll try to find what is going 
to happen after a part of a turn in the middle of the first layer becomes normal.  

III. Quench Propagation. 
As was mentioned earlier, we will assume that for some reason a portion of a turn in 

the center of the first layer of the coil makes a transition to normal state. If this portion is 
large enough, the normal state starts propagating in an uncontrollable manner; in other 
words, coil “quenches”. There are three routes for quench propagation: 

1. Spiraling along the strand; 
2. Propagating along the layer; 
3. Propagating in the radial direction (across the layers) 

III-1. Quench propagation along strands 
We will start the analysis with the quench propagation along the strand. This case was 

studied by many authors, so we will use the expression for the rate of the quench 
propagation in the adiabatic case from [1]: 
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In this expression, I is the coil current at the moment when the temperature of some small 
part of the strand reaches Tcs - critical temperature at this current and magnetic field 
B(n,I). We will use properties of material at the temperature Tav, which is the average 
between Tcs(n,I) (at this temperature, the layer n with current I the temperature starts 
transition) and the temperature of the “cold” part of the winding (or bath temperature) 
Tw0. In this study we will accept Tw0 = 4.5 K. Obviously, quench propagation velocity 
will depend on the layer number at given current because the critical temperature 
increases and the field strength drops with radius. 
As we now have analytical expressions for the material properties and critical surface, it 
is quite straightforward to use the expression for vstrand(n,I) to get results we are looking 
for. They are presented graphically in Fig. 13 in two forms: propagation velocity in 
meters per second as a function of the current with the layer number as a parameter and 
as a function of a layer number with the current as a parameter. Obviously these two 
forms are equivalent.   

   
Fig. 13: Quench propagation velocity along the strand. 
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It is easy to see from the graphs in Fig. 13 that the propagation velocity depends 
strongly on the current and on the layer number (magnetic field). As one could expect, 
the propagation rate is higher for the inner layers (with stronger field), but for the outer 
layers, the dependence on the current and on the layer number is quite weak. Physical 
reason of this is that the critical temperature for low field is close to the ultimate critical 
temperature of the superconductor (that is Tc  = 9.2 K, the critical temperature at I = 0, B 
= 0 - see Fig. 14).  

 
Fig. 14: Critical temperature as a function of magnetic field at zero current. 

Another important quench propagation characteristic is a delay in the normal transition 
from one turn to the next one due to propagation along the strand: 
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Corresponding graph is presented in Fig. 15. It will be compared later with the delay of 
quench propagation across the layers and between turns along the axis. 

 
Fig. 15: Turn-to-turn quench delay time due to propagation along strand 

III-2. Quench propagation in the transverse direction 

As soon as temperature of any part of the coil increases, heat diffusion (thermal 
conductivity) will work to transfer the heat from a hot area to colder one. It is possible to 
evaluate the rate of this process if we know temperature of the source turn (Tcs at quench) 
and the receiving turns (initially Tw0), thermal conductivity of the insulation between the 
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layers, and specific heat values of the relevant materials. While in the normal state, the 
source turn will dissipate power.  The amount of this power depends on the current and 
on the specific resistance at the temperature of the source. Thickness and width (per one 
turn) of the interlayer insulation was found earlier; we will use symbols h and w for these 
quantities. Thermal conductivities of all the materials depend on temperature; we will use 
the average temperature for this estimate. The temperature of the superconducting strand 
will increase due to the heat coming from the normal strand; the rate of this increase will 
be defined also by specific heat of NbTi (at its temperature). In this part we are going to 
find a delay time of quench propagation between the layers, that is the moment when the 
temperature of the receiver becomes the critical temperature at given current and 
magnetic field (layer number). 

The system of equations that describe the process is written below in terms of finite 
difference problem, which can be solved by stepping. Here indexes “i” and “i+1” refer 
to the previous and the next states separated by a time step “dt”. T1 and T2 are 
temperatures of the source and the receiving turns correspondingly. 
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The first equation defines temperature rise of the source during one time step due to 
resistive heating. The heating power is much higher then the heat transfer, so the 
adiabatic condition is well justified. The second equation defines heat transfer. The third 
equation describes temperature rise in NbTi to transferred heat. It takes into the account 
also the temperature rise of the insulation between the layers (and partially on the sides).  

By solving these equations, a series of graphs was produced that allowed extracting 
information about the moment when the receiver’s temperature reaches its critical value. 
Fig. 16a shows the temperature rise for the layer n = 9, that quenches at the moment t = 0 
(curve T1) and for the layer n = 10 (curve T2). Temperature of this layer is reaching the 
critical temperature for the current 300 A and the magnetic field for the 10-th layer 
(which is ~ 8.1 K) at the moment t = 0.0026 s, as shows the graph in Fig. 16b. 

   
   a)       b) 
Fig. 16: Temperature rise for the quench propagating radially: I = 300 A, n = 10 
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On the other hand, from the graph in Fig. 17 it is possible to see how the critical current 
for the layer # 10 changes in time due to increase of temperature. It reached the value I = 
300 A at ~ 0.024 s, which is in a good agreement with Fig. 16b.  

 
Fig. 17: Critical current change in time 

Similar characteristics were taken for I ∈ (200A – 330A) and n ∈ (1 – 20) and for 
each case quench delay time was found. Graphs in Fig. 18 summarize the findings. Both 
graphs in Fig. 18 are identical, just scale was changed to “log” for the second graph to 
properly compare it with the graph shown in Fig. 15. 

   
Fig. 18: Quench propagation delay in the radial direction 

III-3.  Axial Quench Propagation 

Similar work was done to study propagation is the axial direction. In this case, for 
each layer of the coil, delay time stays constant because of our assumption that magnetic 
field does not change along the layers (long solenoid assumption). Curves in Fig. 19 
summarize the results. 

    
Fig. 19: Quench propagation delay in radial direction 
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Comparing Fig. 18 and Fig. 19, it is easy to notice that the values of the delays in the 
axial and radial directions are quite close. This is the result of quite compact winding 
with thin insulation between the layers and turns. To simplify further work, we will 
accept identical propagation properties in both directions. Comparison with propagation 
along the strand (Fig. 15) shows that the quench front propagation along the strand 
happens significantly (~ 5 times) slower. This means that the transverse axial quench 
propagation will rule movement of the quench boundary in the body of the coil. 

To complete this part of the study, it is necessary to come out with an expression for 
the turn-to-turn propagation delay time. Based on what was shown in Fig. 18 and Fig. 19, 
relatively simple form was found to provide a satisfactory description of the effect. The 
expression is provided below and corresponding graph is shown in Fig. 20, which can be 
compared with the graphs in Fig. 18 and 19. 

T(n, I) = 2.3·10-4·[n+9.57·10-3·(330 – I)1.5]  if  n < 17 - 6·10-4·(330 – I)2 

T(n. I) = 2.3·10-4·[17 - 6·10-4·(330 – I)2 + 9.57·10-3·(330 – I)1.5]   otherwise 

 
Fig. 20: Quench propagation delay in the transverse direction. 

III-4  Quench propagation status 

Now we can put together a picture of how quench would propagate in the coil after it 
started in the middle of the central turn of the first layer. As we have found earlier, 
quench propagation along the strand, although having higher velocity, can not compete 
with the transverse propagation, but can help equalizing delay times of radial and axial 
quench propagation. As it is possible to see from Fig. 20, delay time increases with the 
layer number. For this reason, the fastest way quench propagates to the particular turn 
(m, n) within the coil is that it travels first in the first layer to the axial position of the 
turn “m” and then in the radial direction to the layer “n” the turn is in. So, at given 
current, quench delay time to any turn in the body of the coil can be described by the next 
expression: 

 
Knowing when a particular turn quenches allows visualizing quench propagation to 
different currents and in time. A series of charts in Fig. 21 present the status charts for the 
three sets of currents: 330 A, 250 A and 200A. 
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a) I = 200 A; t = 3.5 ms, 90 ms, 220 ms 

 

 
b) I = 250 A, t = 2 ms, 70 ms, 120 ms 
 

 
c) I = 330 A, t = 0.3 ms, 12.5 ms, 44 ms 

Fig. 21: Quench propagation status 

If coil current is 200 A, quench propagation speed almost does not depend on the 
direction of propagation. The reason is that at this current critical temperature is close to 
its ultimate value of 9.2 K, so it does not change much from layer to layer. In this case, 
the quench front reaches the outmost layer in ~ 90 ms and all the turns in the coil are 
normal in about 250 ms. With the 250 A, the quench propagates faster in the axial 
direction. It reaches the outer layer in ~ 70 ms, and all the turns turn become normal in 
about 140 ms. At 330 A, which is close to the ultimate current of the solenoid, quench 
front is almost parallel to the axis. This is due to fast propagation in the first layer, which 
becomes normal in ~ 12 ms. In about 50 ms all the coil becomes normal conducting.  

IV. Coil Heating and Current Decay 
Knowing when a particular turn quenches helps to solve the heating problem. In the 

adiabatic case, as we know when the heating starts for each turn, we can find what the 
temperature is at this location. This can be done by using a relationship representing an 
energy balance case: 
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The integral on the left side is usually referred to as IIt. We will consider in this 
study that the onset of a quench is detected instantly, and at the same moment the power 
supply is insulated from the coil and the coil’s leads are shorted. In this case the current 
shape during the quenching process will depend on how the temperature profile in the 
coil changes in time. Before we know this profile, we will accept that I = const. 
Corresponding correction will be made later based on the obtained temperature 
profile during the first iteration. 

For the specific resistance and thermal capacity in the right hand integral above, we 
must use data averaged through the cross-section of the strand and the coil, taking into 
the account compaction factor and copper-to-non-copper ratio.  

As it is clear from Fig. 7, the impact of magnetic field on the copper specific 
resistance is only significant in the beginning of the quenching process, when the 
temperature is low. This specific resistance does not change much in the range of fields 
between 1T and 8 T. So, not making a significant mistake, while evaluating specific 
resistance, we will use data for B = 7 T.  Fig. 22 shows IIt dependence on the 
temperature, which is a parameter for the integral on the right side of the expression 
above. It means that to obtain certain temperature, corresponding value of IIt-s must be 
reached. Reversing this graph, we get strand temperature as a function of IIt-s. 

  
Fig. 22: Temperature of a turn as a function of the acting IIT-s 

This type of temperature dependence on IIt is quite typical and can be found in many 
text books. If we can find IIt for any turn, we can calculate its temperature. It is possible 
to do so because we know when each turn becomes normal conducting: 

 
Fig. 23 visualizes some results of this evaluation for I = 300 A for different turn 

positions “m, n”. Because I = const at this point, all the lines are straight and start at 
different times because of different delays.  

 
Fig. 23: IIt’s of the coil’s turns as a function of time 
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Knowing IIt-s and how the turn temperature depends on IIt-s, we can plot the 
temperature of every turn against time, as it is shown in Fig. 24 below. 

 
Fig. 24: Temperature of the coil’s turns as function of time 

It is possible to see that, as one could expect, the hottest spot is in the middle of the 
first layer. We need to remember that at this stage we have constant current in the coil. 
That’s why temperature continues growing linearly. This result must be corrected after 
we find how the current decays with time. Hence, we need to know how the resistance of 
the coil changes with time. Turn resistance can be calculated using the next expression: 

 
Corresponding graphs are shown in Fig. 25 below. 

 
Fig. 25: Resistance of turns in the coil vs time. 

Taking a sum of turn resistances, layer resistance can be found. This appeared to be 
quite time consuming in the MathCad environment. Parameterization of layer resistances 
was used to save computing time for the expense of loosing some accuracy though.  The 
series of graphs in Fig. 26 compares layer resistances found by “honest” computation (on 
the left side) with what the parameterization gives.  

   
Fig. 26-a: Layer resistance.  I = 330 A; R1lay(n,t) = 12·t2·[1 – 6.3·10-4·(20 - n)2] 
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Fig. 26-b: Layer resistance.  I = 250 A; R2lay(n,t) = 2.8·t2·[1 – 4.0·10-4·(20 - n)2] 

   
Fig. 26-c: Layer resistance.  I = 2o0 A; R2lay(n,t) = 1.0·t2·[1 – 2.5·10-4·(20 - n)2] 

We will need data for layer resistance when voltage to ground is calculated as it will 
become clear later.  

The total resistance of the coil is found by the taking a sum of resistances of all the 
layers. Graph in Fig. 27 compares “honestly” computed resistance of the coil (on the left 
side) with the suggested parametric expression that will be used in further studies: 

   
       R(I0, t) = 1.0*10-9*I0

4.5*t2 
Fig. 27: Coil resistance 

As we saw earlier, at 200 A coil is fully normal at the moment t = 0.25 s. This means 
that the quadratic law one sees in the graphs is not due to quench propagation, but rather 
due to copper specific resistance dependence on temperature. This quadratic law only 
takes place when the coil current is constant, which can happen if the power supply is on 
after quench. The power supply can support this current only if the voltage drop across 
the coil does not exceed nominal voltage of the power supply. In reality, with 10 kW 
power supply (30 V at 330 A), the resources of the power source will expire at the 
moment t ≈ 20 ms. This means that the graphs in Fig. 27 can not represent real dynamics 
of the resistance change in the coil beyond this time mark. 
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As was agreed before, we consider the coil separated from the power source 
immediately after quench detection and the two leads of the coil connected.  Then the 
current in the coil can be defined using the next expression: 
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The inductance of the coil can be easily calculated as we know all geometrical and 
winding parameters of the coil: Lc = 0.16 H.  Fig. 28 presents corresponding current 
decay graphs (on the left side) and compares them with what an appropriately chosen 
analytical expression gives: 
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Fig. 28: Coil current: the first iteration 

Because coil resistance that we used till this moment is clearly much higher than what 
can be in reality, when the current decays with time. As a result we should expect that it 
is going to take longer time for the current to decay. For how much longer will become 
clear after we recalculate coil resistance dynamics using the new current shape. This is 
done in the companion note TD-06-004. 
 
References: 
1. M. Wilson. Superconducting Magnets. Clarendon Press, Oxford, 1983. 


